Foreign gene transfer to cardiomyocyte using a replication-defective recombinant coxsackievirus B3 without cytotoxicity.
نویسندگان
چکیده
BACKGROUND Replication-competent coxsackievirus B3 (CVB3) has been used as a gene transfer vector for cultured cardiomyocytes and hearts in vivo. However, CVB3 induces cell lysis when it replicates in infected cells. In this study, we investigated whether a replication-defective rCVB3 vector could be generated and used as a noncytotoxic gene transfer vector for cardiomyocytes. METHODS We generated a replication-defective luciferase-expressing CVB3 plasmid. This recombinant cDNA and pCMV-P1 plasmids were amplified and cotransfected into Hek293 cells using transfection reagents. Replication-defective rLuCVB3 virus was recovered from the cells and cell culture supernatants for 3 days after transfection. The generated rLuCVB3 viruses were concentrated on a 30% sucrose cushion and semiquantified using a luciferase assay. In addition, foreign gene delivery by the rLuCVB3 was tested in cultured cardiomyocytes and intact mouse hearts after rLuCVB3 infection. RESULTS Luciferase was expressed in Hek293, HeLa cells and cardiomyocytes after rLuCVB3 infection. In addition, these cells did not show a significant cytopathic effect after 72 h. Luciferase protein expression or activity were detected for 3 days in the myocardium of rLuCVB3-infected mouse hearts without producing cytotoxicity or inflammation. CONCLUSION As a proof-of-concept, these data indicate that a replication-defective rCVB3 vector can be generated and used as a novel gene transfer system to transfect exogenous genes into cardiomyocytes without generating cytotoxicity.
منابع مشابه
Effect of Activation and Inhibition of Cellular PKR on Coxsackievirus B3 Replication
The ds-RNA activated protein kinase (PKR) is a serine-threonine kinase with MW of 68 KDa. It belongs to a family of kinases that control one of the translational initiation factors, eIF2. PKR is produced at high level in response to viral infection. This protein by phosphorylating eIF2 inhibits cellular protein synthesis. In this study, the effect of gamma interferon (IFN-γ), an activator, and ...
متن کاملVirus-host coevolution in a persistently coxsackievirus B3-infected cardiomyocyte cell line.
Coevolution of virus and host is a process that emerges in persistent virus infections. Here we studied the coevolutionary development of coxsackievirus B3 (CVB3) and cardiac myocytes representing the major target cells of CVB3 in the heart in a newly established persistently CVB3-infected murine cardiac myocyte cell line, HL-1(CVB3). CVB3 persistence in HL-1(CVB3) cells represented a typical c...
متن کاملNip21 gene expression reduces coxsackievirus B3 replication by promoting apoptotic cell death via a mitochondria-dependent pathway.
Our previous studies, using differential mRNA display, suggested that the mouse Nip21 gene may be involved in myocarditis development in the coxsackievirus B3 (CVB3)-infected mouse heart. Sequence comparison indicated that the mouse Nip21 gene shares high sequence homology to human Nip2. This human protein is known to interact with both the apoptosis inhibitor Bcl-2 and a homologous protein, th...
متن کاملAn Attenuated Coxsackievirus B3 Vector: A Potential Tool for Viral Tracking Study and Gene Delivery
Cardiomyocytes are quite resistant to gene transfer using standard techniques. We developed an expression vector carrying an attenuated but infectious and replicative coxsackievirus B3 (CVB3) genome, and unique ClaI-StuI cloning sites for an exogenous gene, whose product can be released from the nascent viral polyprotein by 2A(pro) cleavage. This vector was tested as an expression vehicle for g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intervirology
دوره 55 3 شماره
صفحات -
تاریخ انتشار 2012